Personalized VTE Risk Prediction in Cancer Patients using Clinical Informatics

Tuesday | October 10, 2023 | 12:00pm ET

Presenters

Ang Li, MD, MS Assistant Professor Baylor College of Medicine

Kristen Sanfilippo, MD Associate Professor of Medicine, Staff Physician Washington University of Medicine in St. Louis; St. Louis VA Medical Center

Marc Carrier, MD, MSc, FRCPC Head, Division of Hematology, Department of Medicine Professor, Faculty of Medicine The Ottawa Hospital; University of Ottawa

Jean Connors, MD Medical Director, Hemostatic Antithrombotic Stewardship Medical Director, Anticoagulation Management Services Hematology Division Brigham and Women's Hospital / Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School

Personalized VTE Risk Prediction in Cancer Patients using Clinical Informatics

Ang Li, MD, MS

Assistant Professor

Section of Hematology-Oncology

Baylor College of Medicine

October 10, 2023

Disclosure

• None

Objectives

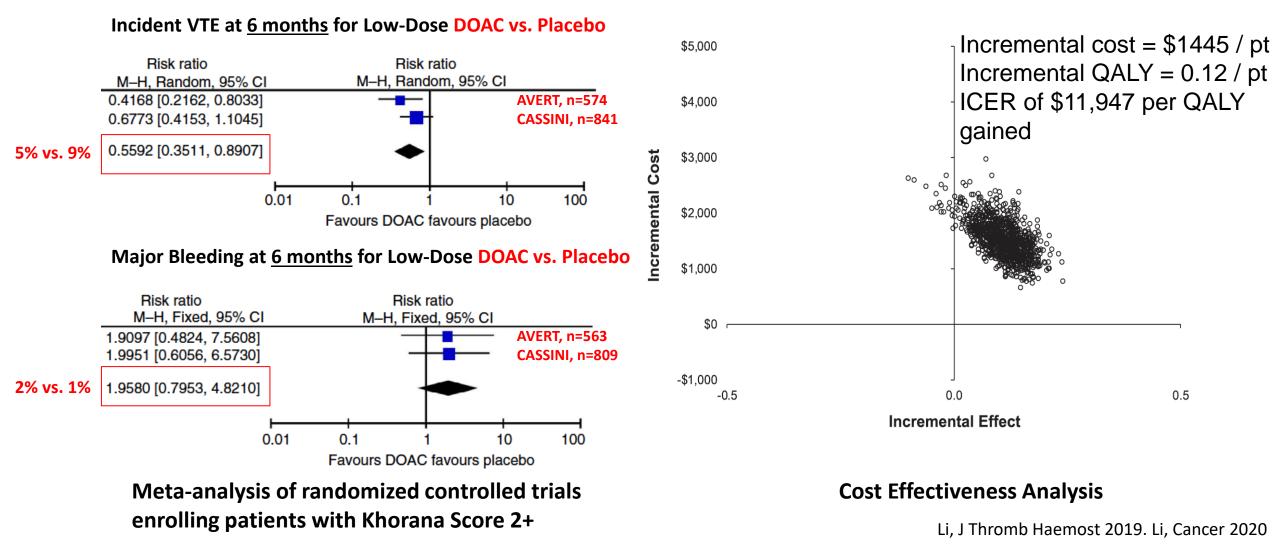
- Overview the advantages and limitations of modern curated electronic health record (EHR) research in cancer and thrombosis
- Provide case study on natural language processing (NLP) algorithms in classifying unstructured text for venous thromboembolism (VTE)
- Provide case study on derivation and validation of risk prediction models of VTE among cancer patients
- Provide case study on implementing patient centered clinical decision support (PC-CDS) tools for pharmacologic thromboprophylaxis

I. Introduction of Cancer Associated Thrombosis (CAT)

Importance of VTE Prediction in Cancer Patients

- VTE occurs 7-9 times more in cancer vs. non-cancer patients
- Incidence of VTE varies significantly by cancer type
- Thrombosis (venous + arterial) is 2nd leading cause of death in ambulatory patients with cancer along with infection (9%)
- Patients with active cancer have a one-year mortality of 65% after VTE diagnosis

Data Supporting VTE Prevention in Selective High-risk Cancer Patients



Existing Risk Models in Cancer Associated Thrombosis

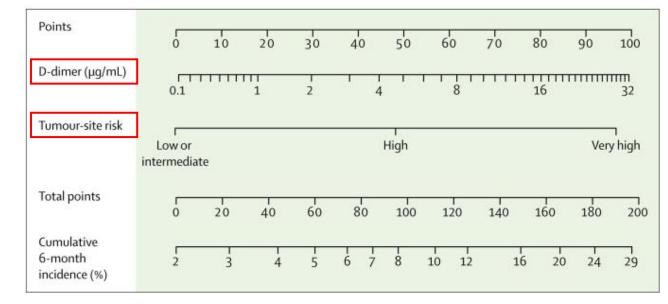
Khorana Score, Blood 2008

Score
2
1
1
1
1
1

A score of 0 =low-risk category. A score of 1-2 =intermediate-risk category. A score of >2 =very high-risk category.

Only ~50% of VTE is classified as high-risk

Pabinger nomogram, Lancet Haematology 2018



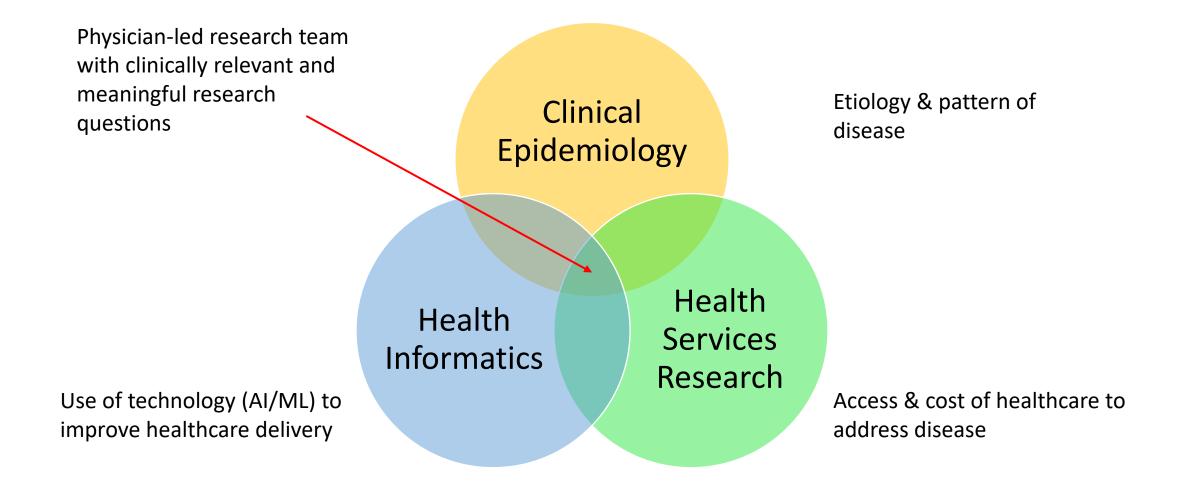
Difficult to incorporate non-standard biomarker

Key: Khorana Score is the most commonly used clinical risk model. D-dimer is the most commonly used biomarker

Ambulatory Pharmacologic Prophylaxis is Rarely Implemented

- Lack of precision: Improved VTE prediction model
 - "Khorana score complemented by clinical judgment and experience"
- Fear of bleeding: Automated exclusion for bleeding risk
 - "Used with caution in those with a high risk of bleeding"
- Lack of time: Clinical decision support
 - High volume clinic, not integrated into EHR
- Lack of awareness: Simpler access to evidence
 - Hematologist vs. oncologist; not comfortable to discuss

Intersection of Medicine, Research and Technology



II. EHR Database Overview

Demographics from Different EHR Databases

Harris County Census (Houston)

- Non-Hispanic White: 29%
- Non-Hispanic Black: 20%
- Hispanic: 44%
- Asian/API: 7%

US Census (2020)

- Non-Hispanic White: 58%
- Non-Hispanic Black: 12%
- Hispanic: 19%
- Asian/API: 6%

Harris Health System (HHS)

- Non-Hispanic White: 16%
- Non-Hispanic Black: 28%
- Hispanic: 50%
- Asian/API: 5%

Uninsured/underinsured

~2,000 incident cancer annuallyEPIC linkage 20102 hospitals (safety-net)Immigrants without prior history

MD Anderson Cancer Center

- Non-Hispanic White: 70%
- Non-Hispanic Black: 10%
- Hispanic: 14%
- Asian/API: 6%

Selective private insurance

~10,000 incident cancer annually EPIC linkage 2017 1 hospital (tertiary referral) Referral & follow-up bias

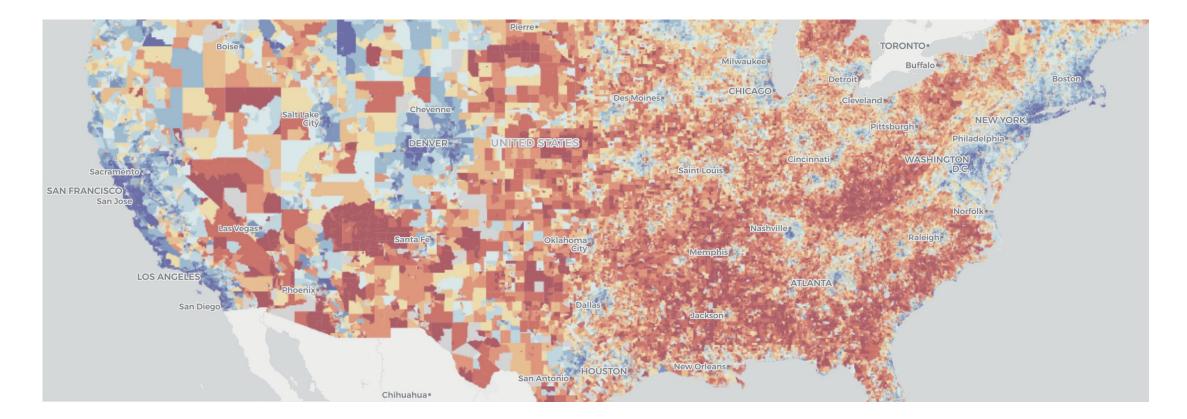
VA National Healthcare System

- Non-Hispanic White: 72%
- Non-Hispanic Black: 21%
- Hispanic: 5%
- Asian/API: 2%

Veteran benefit insurance

~30,000 incident cancer annually VINCI/CDW linkage 2002 100+ hospitals (primary care) 97% male with unique comorbidity

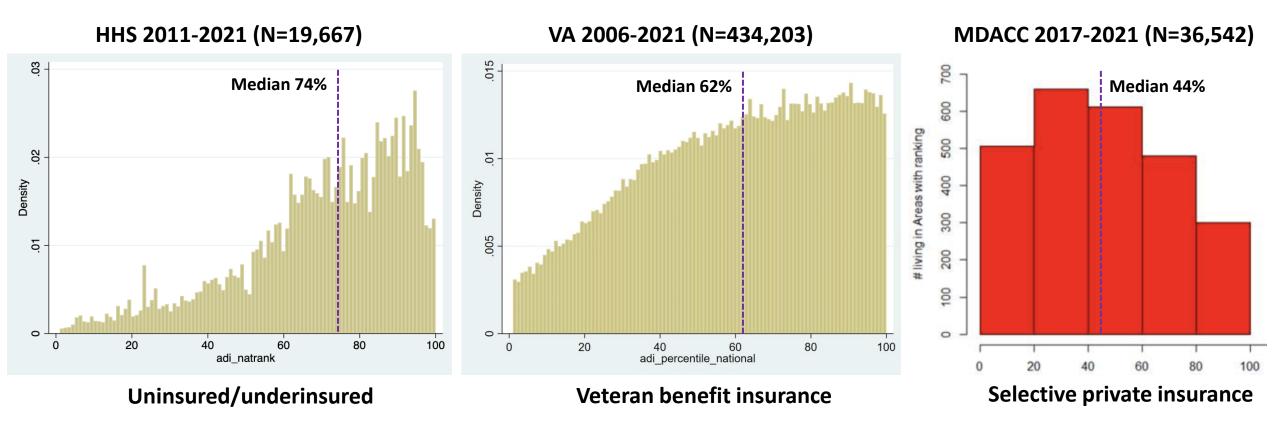
Area of Deprivation Index



Small neighborhood social determinants of health estimated fromBlock Group level data from American Community Surveys4 domains: poverty, housing, employment, education

Kind AJH, Buckingham W. The Neighborhood Atlas. NEJM, 2018

National ADI Distribution in Cancer Databases



Low number = least deprived; high number = most deprived

Data Abstraction & Linkage

Hospital system cancer registry (Cancer Registry)

- Cancer registry data
 - Sequence
 - Diagnosis
 - Histology
 - Stage
 - Demographics
 - Mortality
 - Annual update with 1 year delay

Electronic Health Record (EPIC Caboodle/VINCI CDW)

- Claims-level data
 - ICD/CPT/HCPCS codes
- Encounter-level data
 - Encounter appointments/codes
 - Medical/surgical history
 - Medications prescribed/administered
 - Laboratory/transfusion/micro
 - Imaging/procedures
 - Hospital/clinic notes
 - Daily update

+

Integrated Cancer Data Warehouse (n=20,000 at HHS)

- Diagnosis, histology, staging
- Annually updated mortality
- Demographics at diagnosis
- Address => geo-coded ADI
- Comorbidities => CCI / NCI
- Encounter/appointment
- Scheduled/performed surgeries
- Prescribed/administered medication
 => lines of therapy
- Vitals: weight/height
- Laboratory: lab, micro, transfusion

- ICD diagnosis codes (facility)
- ICD diagnosis codes (encounter)
- ICD diagnosis codes (problem list, medical history, surgical history)
- ICD procedure codes (facility coded)
- CPT/HCPCS procedure codes (facility transaction)

NLP

- Radiology impression
- Discharge summary
- Clinic progress notes
- Procedure: TTE, PFT, EGD

Key: clinician validated & cleaned data from electronic health record is paramount for ANY methodology!

Health Informatics in Cancer Care Delivery

Research Methods

 Develop machine learning methods to address health disparity research

• Examples:

- Computable phenotype of VTE via NLP
- Goal = accurate/precise phenotyping of disease

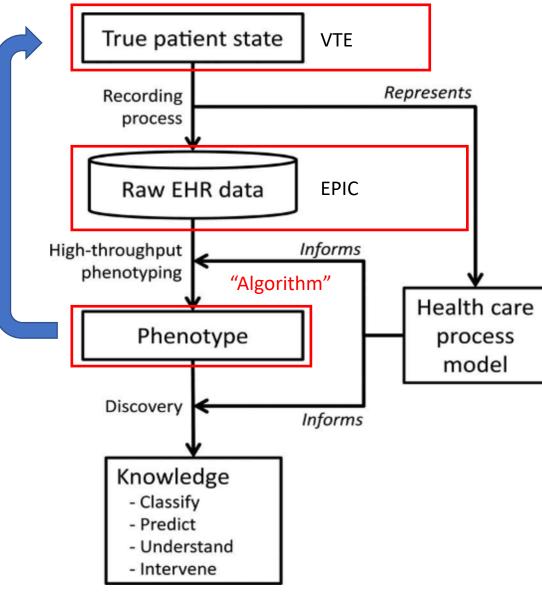
Research Application

- Apply traditional & novel prediction models in different healthcare systems
- Examples:
 - Risk prediction model for VTE and bleeding
 - Goal = reproducible & generalizable model

• Clinical Application

- Integrate risk prediction models at point of care decision making in EHR databases
- Example:
 - PC-CDS for VTE prophylaxis
 - Goal = user friendly unintrusive decision aid

III. Phenotyping VTE & Epidemiology of Cancer Associated Thrombosis (CAT)



Source: <u>Hripcsak and Albers 2013</u>. (Used under a Creative Commons license.)

https://rethinkingclinicaltrials.org/chapters/conduct/electronic-health-records-based-phenotyping/definitions/

How to determine the VTE phenotype

- Structured data
 - ICD codes
 - Billing: inpatient vs. outpatient
 - Encounter
 - Problem list
 - CPT codes
 - Radiology studies
 - IVC filter
 - Medications
 - Anticoagulant

- Unstructured data (NLP)
 - Sequence in repeated notes
 - Region of interest
 - Radiology report: impression
 - Discharge note: hospital course
 - Office progress note: A/P
 - Rule-based vs. ML-based
 - VTE keyword
 - Assertion negation
 - Deep learning model

Key: EHR database (billing + charting) provides much more granularity than claims database (billing)

Defining VTE Computable Phenotype – Validation

HHS: Predicted vs. observed VTE at 12 months (selective review)

	Predicted No.	Reviewed No.	True+ VTE	True- VTE	PPV
ICD- NLP-	8,957 (92%)	300	1	299	0.33%
NLP+ only	115 (1.2%)	115	88	27	76.5%
ICD+ only	127 (1.3%)	127	78	49	61.4%
ICD+ NLP+	570 (5.9%)	200	192	8	96.0%

HHS: Performance of prediction algorithms (weighted sample)

	True+ VTE		True- VTE		
ICD- NLP-	8,957 x 0.33%	30	8,957 x 99.7%	8,927	NPV 100%
NLP+ only	115 x 76.5%		115 x 23.5%		
ICD+ only	127 x 61.4%	710	127 x 38.6%	102	PPV 87%
ICD+ NLP+	570 x 96.0%		570 x 4.0%		
	Sensitivity 96%		Specificity 99%		

ICD/medication: PPV 90%, sensitivity 84% NLP/radiology: PPV 92%, sensitivity 84% ICD or NLP: PPV 87%, sensitivity 96%

VA: Predicted vs. observed VTE at 12 months (selective review)

	Predicted No.	Reviewed No.	True+ VTE	True- VTE	PPV
ICD- NLP-	74,145 (93%)	300	1	299	0.33%
NLP+ only	799 (1.0%)	200	159	41	79.5%
ICD+ only	1,758 (2.2%)	200	161	39	80.5%
ICD+ NLP+	2,813 (3.5%)	200	198	2	99.0%

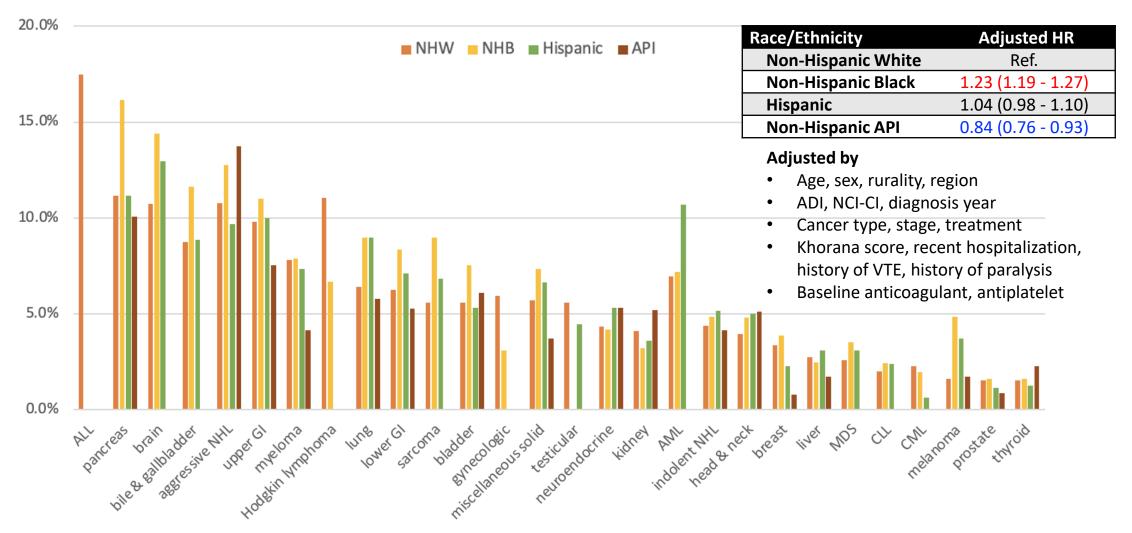
VA: Performance of the prediction algorithms (weighted sample)

	True+ VTE		True- VTE		
ICD- NLP-	74,145 x 0.3%	222	74,145 x 99.7%	73,923	NPV 100%
NLP+ only	799 x 79.6%		799 x 20.4%		
ICD+ only	1,758 x 80.5%	4,836	1,758 x 19.5%	534	PPV 90%
ICD+ NLP+	2,813 x 99.0%		2,813 x 1.0%		
	Sensitivity 96%		Specificity 99%		

ICD/medication: PPV 89%, sensitivity 83% NLP/radiology: PPV 95%, **sensitivity 68%** ICD or NLP: PPV 90%, sensitivity 96%

Key: NLP is system-specific but can greatly augment accuracy of structured phenotyping algorithm

Incidence of CAT by Cancer Type and Race/Ethnicity in 434,203 Veterans



Key: CAT incidence is specific to patient (race, weight, comorbidity) and cancer (type, stage, treatment) Martens, JAMA Netw Open 2023

IV. VTE Risk Prediction Modeling

Creating Validated, Optimized, and Inclusive Risk Prediction Model for CAT

- Population:
 - First cancer diagnosis receiving first-line systemic therapy within 1 year
 - Exclude if recent acute VTE last 6 months or on therapeutic AC
 - Assess VTE from index treatment until loss of follow-up (90+ day gap)
- Derivation cohort:
 - HHS (N=9,769, 2011-2020, VTE 6.2% at 6-month)
- Validation cohorts:
 - VA national (N=79,517, 2011-2020, VTE 5.1% at 6-month)
 - MD Anderson (N=21,142, 2017-2020, VTE 5.7% at 6-month)

Clinical Knowledge is Important for Initial Variable Selection

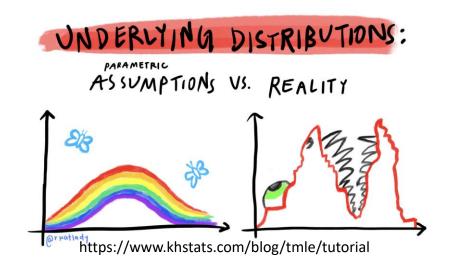
Cancer site/histology subtype				
Pre-therapy body mass index >=35				
Pre-therapy white blood cell count >11				
Pre-therapy hemoglobin <10				
Pre-therapy platelet >=350				
Cancer Stage				
Treatment initiation timing				
Treatment regimen				
Age				
Sex				
Race/Ethnicity				
History of PE/LE-DVT				
Recent prolonged hospitalization >3d last 3 months				
Anticoagulant prescription in last 3 months				
Antiplatelet prescription in the last 3 months				
Surgery within last 3 months				
Creatine				
Total bilirubin				
Alanine transaminase				

	Congestive heart failure
	Myocardial infarction
	Cardiac arrhythmia
	Cardiac valvular disease
	Peripheral vascular disease
	Cerebral vascular disease
Patient	Chronic obstructive pulmonary disease
Comorbidities	Paralysis or immobility
Comorbiulties	Diabetes
	Hypertension
	Renal Disease
	Liver disease
	HIV/AIDS
	Rheumatologic disease
	Coagulopathy

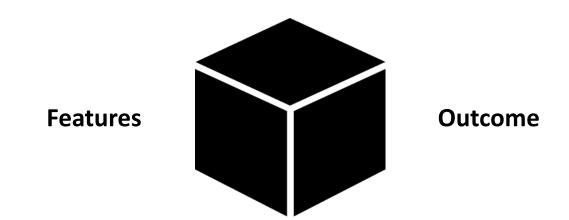
A priori selected risk predictors for VTE

Interpretable vs. Black Box Machine Learning models

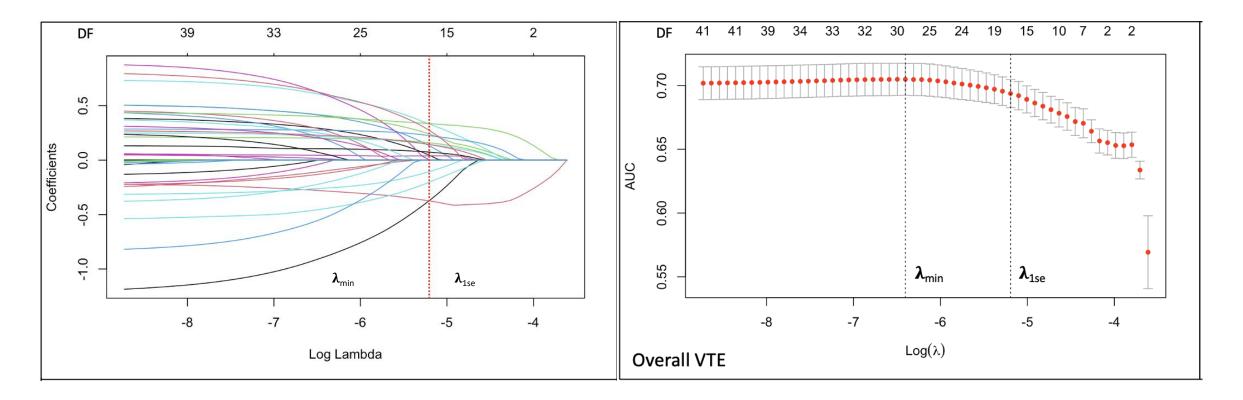
- Linear regression, logistic regression, Cox regression
- Generalized linear models: non-Gaussian outcomes (family/link)
- Generalized additive models: non-linear outcomes (splines)



##	[1]	"SL.bartMachine"	"SL.bayesglm"	"SL.biglasso"
##	[4]	"SL.caret"	"SL.caret.rpart"	"SL.cforest"
##	[7]	"SL.earth"	"SL.extraTrees"	"SL.gam"
##	[10]	"SL.gbm"	"SL.glm"	"SL.glm.interaction
##	[13]	"SL.glmnet"	"SL.ipredbagg"	"SL.kernelKnn"
##	[16]	"SL.knn"	"SL.ksvm"	"SL.lda"
##	[19]	"SL.leekasso"	"SL.lm"	"SL.loess"
##	[22]	"SL.logreg"	"SL.mean"	"SL.nnet"
##	[25]	"SL.nnls"	"SL.polymars"	"SL.qda"
##	[28]	"SL.randomForest"	"SL.ranger"	"SL.ridge"
##	[31]	"SL.rpart"	"SL.rpartPrune"	"SL.speedglm"
##	[34]	"SL.speedlm"	"SL.step"	"SL.step.forward"
##	[37]	"SL.step.interaction"	"SL.stepAIC"	"SL.svm"
##	[40]	"SL.template"	"SL.xgboost"	



Feature Selection via LASSO Penalized Shrinkage



Goal is to optimize prediction with the most parsimonious model (trade-off between complexity & fit)

Logistic Regression Model Fitted from LASSO Selection

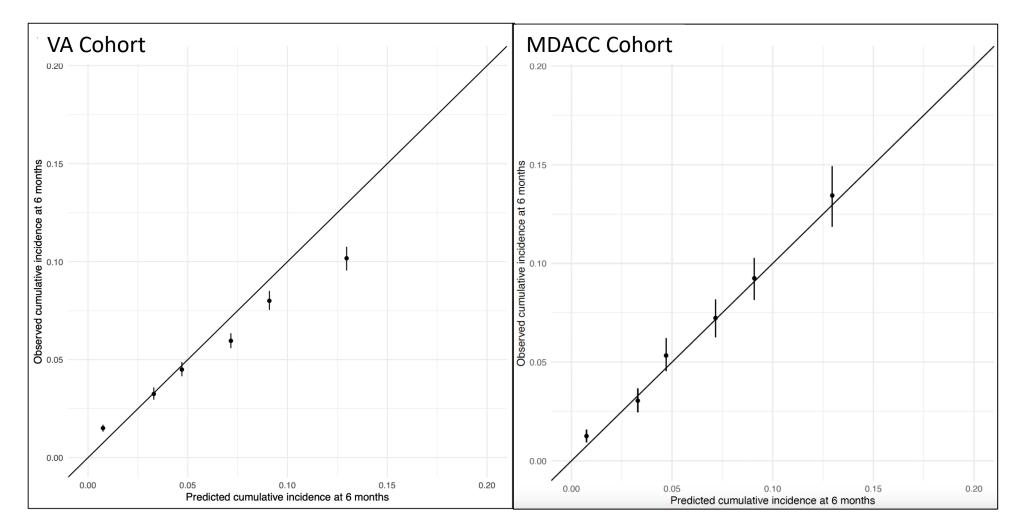
	Risk Predictors	Number (%)	OR for VTE (95% CI)	Point
	Modified cancer subtype risk			
	- Other solid or heme cancer ^a	5,206 (53.3%)	Reference	0
	- Colorectal cancer	1,152 (11.8%)	1.36 (1.01-1.82)	1
	- Lung, ovarian, uterine, bladder, kidney,			
	testicular, aggressive NHL, myeloma, brain,	2,644 (27.1%)	2.23 (1.81-2.74)	2
Khorana score	soft tissue sarcoma			
risk factors	- Pancreas, gastric, esophageal,			2
	cholangiocarcinoma, gallbladder	767 (7.9%)	2.26 (1.69-3.03)	3
	Pre-therapy BMI ≥35	1,318 (13.5%)	1.45 (1.14-1.83)	1
	Pre-therapy WBC >11	1,652 (16.9%)	1.34 (1.09-1.65)	1
	Pre-therapy hemoglobin <10	2,042 (20.9%)	1.49 (1.23-1.80)	1
	Pre-therapy platelet ≥350	2,700 (27.6%)	1.24 (1.03-1.49)	1

Discrimination of Novel Risk Prediction Model

Dataset	Risk score	VTE % at 6 mo	Classification	VTE % at 6 mo	TD-C statistic (95% CI)	0.20 -
HHS Derivation Cohort	0- (1,938)	0.8% (14)	Low-risk			0.15 -
	1 (1,483)	3.3% (47)	50.8% (4,958)	2.8% (131)		0.10 -
	2 (1,537)	4.7% (70)	50.878 (4,558)		0.71 (0.69-0.72)	
	3 (1,644)	7.2% (114)	High-risk		0.71 (0.05-0.72)	0.05 -
	4 (1,523)	9.1% (135)	•	9.8% (459)		0.00 -
	5+ (1,644)	13.0% (210)	49.2% (4811)			0 3 6 9 12 15 18 21 24
VA	0- (18,022)	1.5% (267)	Low-risk			
	1 (12,551)	3.3% (411)		3 0% (1 272)		0.15 -
	2 (13,321)	4.5% (594)	54.2% (43,894)			0.10 -
Validation	3 (14,969)	6.0% (888)	High rick	High-risk 7.8% (2,755)	0.68 (0.67-0.69)	
Cohort	4 (11,381)	8.1% (915)	•			0.05 -
	5+ (9 <i>,</i> 273)	10.3% (952)	44.8% (35,623)			
	0- (5,661)	1.3% (59)	Low-risk			0 3 6 9 12 15 18 21 24
MDACC	1 (3,558)	3.1% (99)		2.6% (325)		ci -
	2 (3,462)	5.4% (167)	60.0% (12,681)		0 71 (0 60 0 72)	<u>8</u> -
Validation	3 (3,489)	7.3% (232)	High-risk		0.71 (0.69-0.72)	-
Cohort	4 (2,918)	9.3% (250)	-	8.8% (742)		
	5+ (2,054)	13.8% (260)	40.0% (8,461)			S

Li, J Clin Oncol 2023. Li, Am J Hematol 2023

Calibration Curves in Validation Cohorts



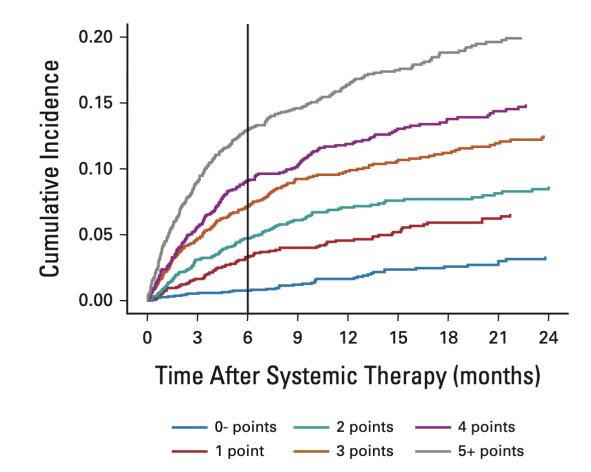
Li, J Clin Oncol 2023. Li, Am J Hematol 2023

Comparison with Khorana Score

Dataset	Category	Khorana Score	New RAM	Number	VTE % at 6 mo
HHS	Concordant (79%)	Low-risk	Low-risk	4,495	2.6% (112)
Derivation	Concordant (78%)	High-risk	High-risk	3,107	10.5% (321)
	Poclassified (22%)	Low-risk	High-risk	1,704	8.4% (138)
Cohort	Reclassified (22%)	High-risk	Low-risk	463	4.3% (19)
VA	Concordant (72%) Reclassified (28%)	Low-risk	Low-risk	40,360	3.0% (1,184)
VA		High-risk	High-risk	17,242	8.2% (1,406)
		Low-risk	High-risk	18,381	7.4% (1,349)
Cohort		High-risk	Low-risk	3,534	2.5% (88)
MDACC	Concordant (200/)	Low-risk	Low-risk	11,947	3.0% (303)
Validation	Concordant (80%)	High-risk	High-risk	4,931	10.0% (451)
	Reclassified (20%)	Low-risk	High-risk	3,530	9.0% (291)
Cohort	Reclassified (20%)	High-risk	Low-risk	734	3.4% (22)

Key: New risk model increases VTE % in high-risk group by ~25% & improves overall C statistic ~0.07

Available Online Calculator



https://dynamicapp.shinyapps.io/EHR-CAT/

Cancer site/histology (choose one from the following)

-

Other cancers (0)

Cancer stage (AJCC)

- Early stage (I-II) (0)
- Advanced stage (III-IV) (+1)

Type of systemic therapy

- Cytotoxic chemotherapy (chemo) and/or immune checkpoint inhibitor (ICI) (0))
- O Targeted and/or endocrine therapy without chemo/ICI (-1)

Patient race

- All other race (0)
- East/South Asian, Pacific Islander, American Indian or Alaskan Native (-1)

Pretherapy body mass index \ge 35

O No (0) ○ Yes (+1)

Pretherapy white blood cell count > 11 x 10^9/L

O No (0) ○ Yes (+1)

Pretherapy hemoglobin < 10 g/dL

O No (0) ○ Yes (+1)

Pretherapy platelet count \ge 350 x 10^9/L

O No (0) ○ Yes (+1)

History of VTE

○ No (0) ○ Yes (+1)

History of paralysis/immobility

O No (0) ○ Yes (+1)

Recent/current hospitalization >3 days in the past 3 months

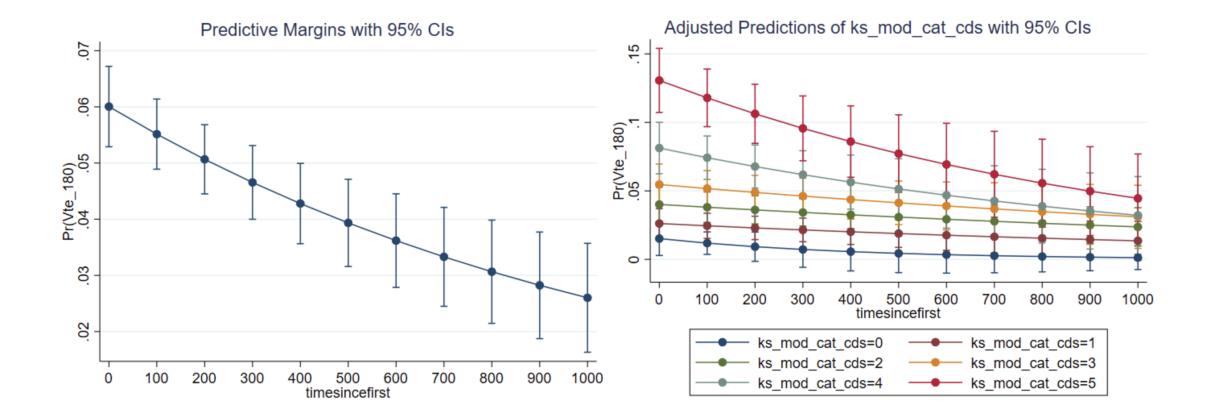
O No (0) ○ Yes (+1)

V. Dynamic Modeling & Implementation of PC-CDS

Ambulatory Pharmacologic Prophylaxis is Rarely Implemented

- Lack of precision: Improved VTE prediction model
 - "Khorana score complemented by clinical judgment and experience"
- Fear of bleeding: Automated exclusion for bleeding risk
 - "used with caution in those with a high risk of bleeding"
- Lack of time: Clinical decision support
 - high volume clinic, not integrated into EHR
- Lack of awareness: Simpler access to evidence
 - hematologist vs. oncologist; not comfortable to discuss

CAT Risk Decreases Over Time



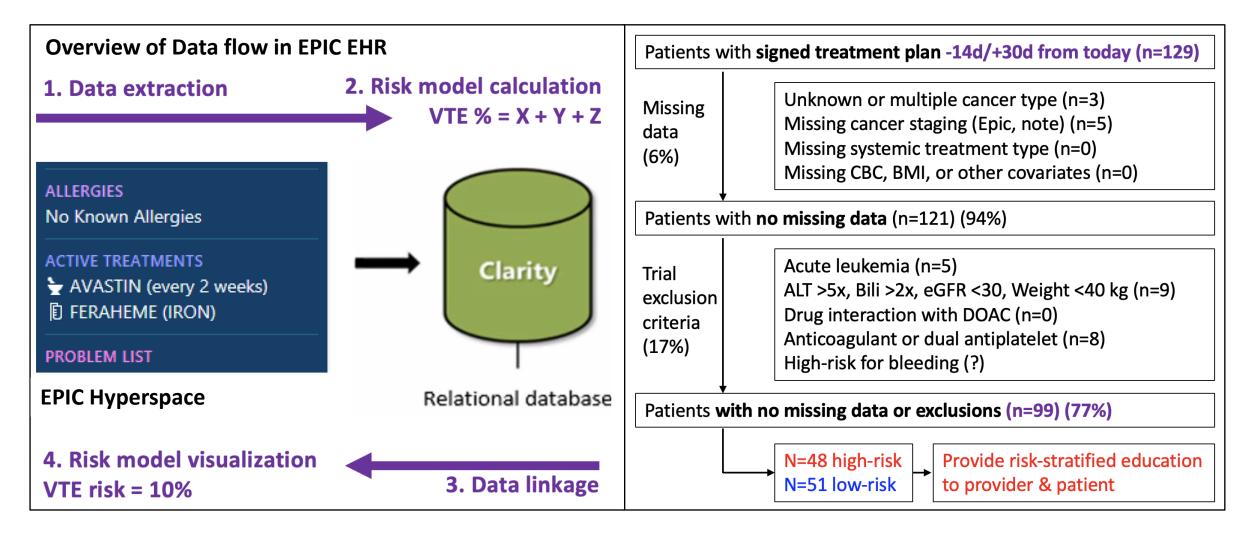
Key: a time adjustment factor is needed to apply a static model over time

Li, unpublished data

Patient Specific Risk Factors Change Over Time

id	plan_n	cancer_type	dx_date	treat_date	chemo_class_regimen_cds	risk_score	vte_180d	vte_date	vte_type
1	1	breast	5/26/20	07/23/20	chemo+/-others (no immuno)	2	0		
1	2	breast	5/26/20	11/17/20	chemo+/-others (no immuno)	4	0		
1	3	breast	5/26/20	03/09/21	chemo+/-others (no immuno)	2	0	•	
2	1	breast	6/27/18	08/17/18	target+/-endo (no chemo/immmuno)	1	0		•
2	2	breast	6/27/18	10/19/18	target+/-endo (no chemo/immmuno)	2	0		
2	3	breast	6/27/18	12/27/19	target+/-endo (no chemo/immmuno)	1	0		
24	1	lung	10/27/16	12/12/16	chemo+/-others (no immuno)	5	1	4/20/17	Acute PE
29	1	colorectal	6/23/17	08/04/17	chemo+/-others (no immuno)	5	0	7/6/18	Acute PE
29	2	colorectal	6/23/17	12/12/17	chemo+/-others (no immuno)	4	1	7/6/18	Acute PE
29	3	colorectal	6/23/17	03/19/18	chemo+/-others (no immuno)	2	1	7/6/18	Acute PE
105	1	lung	8/29/19	10/11/19	chemo/immuno+others	7	0	7/16/20	Acute PE
105	2	lung	8/29/19	01/22/20	immuno+/-others (no chemo)	6	1	7/16/20	Acute PE

Automate Patient Selection & Exclusion in EHR Prospectively



Patient Centered Clinical Decision Support (PC-CDS)

• Design/assess/optimize usage:

- Time consuming process
- Design provider- & patient-specific surveys & education fliers
- Assess barriers to implementation (<25%): time, cost, difficulty, annoyance
- Assess outcomes after implementation
- Modify implementation strategy
- BCM VCG QI project 2023

Thank You

- Research Team
 - Danielle Guffey (statistician)
 - Raka Bandyo (data analyst)
 - Xiangjun Xiao (lead programmer)
 - Shengling Ma (post-doc)
 - Rockbum Kim (post-doc)
 - Arash Maghsoudi (post-doc)
 - Mahrukh Jamil (research coordinator)
- Collaborators
 - Nathanael Fillmore
 - Kelly Merriman
 - Abiodun Oluyomi
 - Bo Peng
 - Cristhiam Rojas Hernandez
 - Jordan Schaefer

- Mentors
 - Christopher Amos
 - Christopher Flowers
 - Stephanie Lee
 - Marc Carrier
 - Neil Zakai
 - David Garica
- Funding Support
 - CPRIT First-Time Tenure-Track
 - NIH AIM-AHEAD
 - NIH NHLBI K23

Presenters

Ang Li, MD, MS Assistant Professor Baylor College of Medicine

Kristen Sanfilippo, MD Associate Professor of Medicine, Staff Physician Washington University of Medicine in St. Louis; St. Louis VA Medical Center

Marc Carrier, MD, MSc, FRCPC Head, Division of Hematology, Department of Medicine Professor, Faculty of Medicine The Ottawa Hospital; University of Ottawa

Jean Connors, MD Medical Director, Hemostatic Antithrombotic Stewardship Medical Director, Anticoagulation Management Services Hematology Division Brigham and Women's Hospital / Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School

Webinar Archive on YouTube

@AnticoagForum

Live Broadcast Friday, October 13 & Saturday, October 14

Extended On-Demand Access for 30 days Until November 14

Anticoagulatior FORUM

Join us at this compact 2-day meeting!

- ✓ \$249 per person
- ✓ 22 presentations
- ✓ Daily chalk talks
- ✓ 15+ hours of CME for Physicians, Nurses, & Pharmacists
- Virtual exhibit hall

https://acforumbootcamp.org/2023/

This webinar is brought to you, in part, by the support of the following companies:

acforum.org