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Objectives

* Overview the advantages and limitations of modern curated
electronic health record (EHR) research in cancer and thrombosis

* Provide case study on natural language processing (NLP) algorithms in
classifying unstructured text for venous thromboembolism (VTE)

* Provide case study on derivation and validation of risk prediction
models of VTE among cancer patients

* Provide case study on implementing patient centered clinical decision
support (PC-CDS) tools for pharmacologic thromboprophylaxis



. Introduction of Cancer
Associated Thrombosis (CAT)



Importance of VTE Prediction in Cancer Patients

* VTE occurs 7-9 times more in cancer vs. non-cancer patients

* Incidence of VTE varies significantly by cancer type

* Thrombosis (venous + arterial) is 2nd leading cause of death in
ambulatory patients with cancer along with infection (9%)

* Patients with active cancer have a one-year mortality of 65% after
VTE diagnosis

Blom, JAMA 2005. Khorana, J Thromb Haemost 2007. Cohen, Thromb Haemost 2017. Mulder, Blood 2021



Data Supporting VTE Prevention in Selective High-risk Cancer Patients

Incident VTE at 6 months for Low-Dose DOAC vs. Placebo
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Existing Risk Models in Cancer Associated Thrombosis

Khorana Score, Blood 2008

Variable Score
Very high-risk tumor (stomach, pancreas) 2
High-risk tumor (lung, gynecologic, genitourinary 1
excluding prostate)

Hemoglobin level <100 g/L or use of red cell 1
growth factors

Prechemotherapy leukocyte count >11 X 10%/L
Prechemotherapy platelet count 350 X 10°/L 1
or greater

Body mass index 35 kg/m?” or greater : )

A score of 0 = low-risk category. A score of 1-2 = intermediate-risk

category. A score of >2 = very high-risk category.

Only ~50% of VTE is classified as high-risk

Pabinger nomogram, Lancet Haematology 2018
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Difficult to incorporate non-standard biomarker

Key: Khorana Score is the most commonly used clinical risk model. D-dimer is the most commonly used biomarker




Ambulatory Pharmacologic Prophylaxis is Rarely Implemented

* Lack of precision: Improved VTE prediction model
* “Khorana score complemented by clinical judgment and experience”

* Fear of bleeding: Automated exclusion for bleeding risk
* “Used with caution in those with a high risk of bleeding”

e Lack of time: Clinical decision support
* High volume clinic, not integrated into EHR

* Lack of awareness:  Simpler access to evidence
 Hematologist vs. oncologist; not comfortable to discuss



Intersection of Medicine, Research and Technology

Physician-led research team
with clinically relevant and

meaningful research Etiology & pattern of

questions . CllanaI disease
Epidemiology
Health
Health :
: Services
Informatics
Research
Use of technology (Al/ML) to Access & cost of healthcare to

improve healthcare delivery address disease



I|. EHR Database Overview



Demographics from Different EHR Databases

Harris County Census (Houston)

Non-Hispanic White: 29%
Non-Hispanic Black: 20%
Hispanic: 44%
Asian/API: 7%

Harris Health System (HHS)

* Non-Hispanic White: 16%
* Non-Hispanic Black: 28%

* Hispanic: 50%

* Asian/APl: 5%

US Census (2020)

Non-Hispanic White: 58%
Non-Hispanic Black: 12%
Hispanic: 19%
Asian/APl: 6%

MD Anderson Cancer Center
* Non-Hispanic White: 70%
* Non-Hispanic Black: 10%
* Hispanic: 14%

* Asian/APIl: 6%

VA National Healthcare System
* Non-Hispanic White: 72%

* Non-Hispanic Black: 21%

e Hispanic: 5%

* Asian/APl: 2%

Uninsured/underinsured
~2,000 incident cancer annually
EPIC linkage 2010

2 hospitals (safety-net)
Immigrants without prior history

Selective private insurance
~10,000 incident cancer annually
EPIC linkage 2017

1 hospital (tertiary referral)
Referral & follow-up bias

Veteran benefit insurance

~30,000 incident cancer annually
VINCI/CDW linkage 2002

100+ hospitals (primary care)

97% male with unique comorbidity



Area of Deprivation Index
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https://www.nejm.org/doi/full/10.1056/NEJMp1802313
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Data Abstraction & Linkage

Hospital system cancer registry
(Cancer Registry)

* Cancer registry data

Sequence

Diagnosis

Histology

Stage

Demographics

Mortality

Annual update with 1 year delay

+ Electronic Health Record
(EPIC Caboodle/VINCI CDW)

e Claims-level data

ICD/CPT/HCPCS codes

* Encounter-level data

Encounter appointments/codes
Medical/surgical history

Medications prescribed/administered
Laboratory/transfusion/micro
Imaging/procedures

Hospital/clinic notes

Daily update

Extensive data validation, cleaning, filtering, and linkage



Integrated Cancer Data Warehouse (n=20,000 at HHS)

Diagnosis, histology, staging
Annually updated mortality
Demographics at diagnosis
Address => geo-coded ADI
Comorbidities => CCl / NCI
Encounter/appointment
Scheduled/performed surgeries

Prescribed/administered medication
=> lines of therapy

Vitals: weight/height

Laboratory: lab, micro, transfusion

* |CD diagnosis codes (facility)

ICD diagnosis codes (encounter)

ICD diagnosis codes (problem list,
medical history, surgical history)

ICD procedure codes (facility coded)
CPT/HCPCS procedure codes (facility

transaction)

Radiology impression
Discharge summary

Clinic progress notes

Procedure: TTE, PFT, EGD .

- NLP

Key: clinician validated & cleaned data from electronic health record is paramount for ANY methodology!




Health Informatics in Cancer Care Delivery

* Research Methods * Research Application * Clinical Application
* Develop machine * Apply traditional & * Integrate risk prediction
learning methods to novel prediction models at point of care
address health disparity models in different decision making in EHR
research healthcare systems databases
* Examples: e Examples: * Example:
* Computable phenotype * Risk prediction model * PC-CDS for VTE
of VTE via NLP for VTE and bleeding prophylaxis
* Goal = accurate/precise * Goal = reproducible & e Goal = user friendly
phenotyping of disease generalizable model unintrusive decision aid

& Al 57
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True patient state | VTE

Recording Represents
process

= =

ERaw EHR dataj EPIC

1
High-throughput Informs
BRRnCYDINg “Algorithm” A 4

Health care
Phenotype process
I model

Discovery Informs

Knowledge
- Classify
- Predict
- Understand
- Intervene

Source: Hripcsak and Albers 2013. (Used under a Creative
Commons license.)

https://rethinkingclinicaltrials.org/chapters/conduct/electronic-health-records-based-phenotyping/definitions/



How to determine the VTE phenotype

e Structured data * Unstructured data (NLP)
* |CD codes e Sequence in repeated notes
* Billing: inpatient vs. outpatient e Region of interest
* Encounter * Radiology report: impression
*—Problem-ist * Discharge note: hospital course
e CPT codes e Office progress note: A/P
* Radiology studies e Rule-based vs. ML-based
* |VC filter * VTE keyword
* Medications * Assertion negation
e Anticoagulant e Deep learning model

Key: EHR database (billing + charting) provides much more granularity than claims database (billing)



Defining VTE Computable Phenotype — Validation

HHS: Predicted vs. observed VTE at 12 months (selective review)

VA: Predicted vs. observed VTE at 12 months (selective review)

Predicted No. | Reviewed No. | True+ VTE | True- VTE PPV
ICD- NLP- 8,957 (92%) 300 1 299 0.33%
NLP+only | 115 (1.2%) 115 88 27 76.5%
ICD+only | 127 (1.3%) 127 78 49 61.4%
ICD+ NLP+ 570 (5.9%) 200 192 8 96.0%
HHS: Performance of prediction algorithms (weighted sample)
True+ VTE True- VTE
ICD- NLP- | 8,957 x0.33% 30 (8,957 x99.7% 8,927 | NPV 100%
NLP+only [115x76.5% 115 x 23.5%
ICD+only (127 x61.4% 710 | 127 x 38.6% 102 PPV 87%
ICD+ NLP+ [ 570 x 96.0% 570 x 4.0%
Sensitivity 96% Specificity 99%

ICD/medication: PPV 90%, sensitivity 84%
NLP/radiology: PPV 92%, sensitivity 84%
|ICD or NLP: PPV 87%, sensitivity 96%

Predicted No. | Reviewed No. | True+ VTE | True- VTE PPV
ICD- NLP- | 74,145 (93%) 300 1 299 0.33%
NLP+ only 799 (1.0%) 200 159 41 79.5%
ICD+only | 1,758 (2.2%) 200 161 39 80.5%
ICD+ NLP+ | 2,813 (3.5%) 200 198 2 99.0%
VA: Performance of the prediction algorithms (weighted sample)
True+ VTE True- VTE

ICD- NLP- (74,145 x 0.3% 222 |74,145x99.7% | 73,923 | NPV 100%
NLP+only 799 x 79.6% 799 x 20.4%

ICD+only |1,758 x 80.5% 4,836 1,758 x 19.5% 534 PPV 90%
ICD+ NLP+ | 2,813 x 99.0% 2,813 x1.0%

Sensitivity 96% Specificity 99%

ICD/medication: PPV 89%, sensitivity 83%
NLP/radiology: PPV 95%, sensitivity 68%
ICD or NLP: PPV 90%, sensitivity 96%

Key: NLP is system-specific but can greatly augment accuracy of structured phenotyping algorithm

Li, J Clin Oncol 2023




Incidence of CAT by Cancer Type and Race/Ethnicity in 434,203 Veterans
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Race/Ethnicity Adjusted HR

Non-Hispanic White Ref.
Non-Hispanic Black 1.23(1.19-1.27)

Hispanic 1.04 (0.98 - 1.10)
Non-Hispanic API 0.84 (0.76 - 0.93)
Adjusted by

* Age, sex, rurality, region

* ADI, NCI-Cl, diagnosis year

* Cancer type, stage, treatment

* Khorana score, recent hospitalization,
history of VTE, history of paralysis

* Baseline anticoagulant, antiplatelet
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Key: CAT incidence is specific to patient (race, weight, comorbidity) and cancer (type, stage, treatment)

Martens, JAMA Netw Open 2023



V. VTE Risk Prediction Modeling



Creating Validated, Optimized, and Inclusive Risk Prediction Model for CAT

* Population:
* First cancer diagnosis receiving first-line systemic therapy within 1 year
e Exclude if recent acute VTE last 6 months or on therapeutic AC
e Assess VTE from index treatment until loss of follow-up (90+ day gap)

e Derivation cohort:
« HHS (N=9,769, 2011-2020, VTE 6.2% at 6-month)

 Validation cohorts:
* VA national (N=79,517, 2011-2020, VTE 5.1% at 6-month)
 MD Anderson (N=21,142, 2017-2020, VTE 5.7% at 6-month)



Clinical Knowledge is Important for Initial Variable Selection

Khorana score (KS)
factors

Cancer site/histology subtype

Pre-therapy body mass index >=35

Pre-therapy white blood cell count >11

Pre-therapy hemoglobin <10

Pre-therapy platelet >=350

Cancer-specific risk
factors

Cancer Stage

Treatment initiation timing

Treatment regimen

Patient-
demographic
factors

Age

Sex

Race/Ethnicity

Additional clinical
factors

History of PE/LE-DVT

Recent prolonged hospitalization >3d last 3 months

Anticoagulant prescription in last 3 months

Antiplatelet prescription in the last 3 months

Congestive heart failure

Myocardial infarction

Cardiac arrhythmia

Cardiac valvular disease

Peripheral vascular disease

Cerebral vascular disease

Chronic obstructive pulmonary disease

Patient : : -
Paralysis or immobility

Comorbidities Diabetes

Hypertension

Renal Disease

Liver disease

HIV/AIDS

Rheumatologic disease

Coagulopathy

Surgery within last 3 months

Additional lab
factors

Creatine

Total bilirubin

Alanine transaminase

A priori selected risk predictors for VTE




Interpretable vs. Black Box Machine Learning models

* Linear regression, logistic
regression, Cox regression

* Generalized linear models: non-
Gaussian outcomes (family/link)

 Generalized additive models:
non-linear outcomes (splines)

PARAMETRIC

ASSUMPTIONs VS, REALITY
N ﬂ‘

“Https://www.khstats.com/blog/tmle/tutorial
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##
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[1]
[4]
[7]
[10]
[13]
[16]

[22]
[25]
[28]
[31]
[34]
[37]
[40]

Features

“SL.bartMachine"
“SL.caret"
"SL.earth"
"SL.gbm"
"SL.glmnet"
“SL.knn"

[19] *
"SL.logreg"
"SL.nnls"

“SL. randomForest"
“SL.rpart"
"SL.speedlm"
"SL.step.interaction"
"SL.template"

SL. leekasso"

"SL.bayesglm"
"SL.caret.rpart"
"SL.extraTrees"
"SL.glm"
"SL.ipredbagg"
"SL.ksvm"
"SL.1m"
"SL.mean"
"SL.polymars"
"SL. ranger"
"SL.rpartPrune"
"SL.step"
"SL.stepAIC"
"SL.xgboost"

"SL.biglasso"
"SL.cforest"
"SL.gam"
"SL.glm.interaction
"SL.kernelKnn"
"SL. lda"

"SL. loess"
"SL.nnet"
"SL.qda"
"SL.ridge"
"SL.speedglm"
"SL.step.forward"
"SL.svm"

Outcome



Feature Selection via LASSO Penalized Shrinkage
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Goal is to optimize prediction with the most parsimonious model (trade-off between complexity & fit)




Logistic Regression Model Fitted from LASSO Selection

Risk Predictors Number (%) OR for VTE (95% Cl) Point
Modified cancer subtype risk
- Other solid or heme cancer @ 5,206 (53.3%) Reference 0
- Colorectal cancer 1,152 (11.8%) 1.36 (1.01-1.82) 1
- Lung, ovarian, uterine, bladder, kidney,
testicular, aggressive NHL, myeloma, brain, | 2,644 (27.1%) 2.23 (1.81-2.74) 2
Khorana score | soft tissue sarcoma
risk factors - Pancre.as, ga'.strlc, esophageal, 767 (7.9%) 2.26 (1.69-3.03) 3
cholangiocarcinoma, gallbladder
Pre-therapy BMI 235 1,318 (13.5%) 1.45 (1.14-1.83) 1
Pre-therapy WBC >11 1,652 (16.9%) 1.34 (1.09-1.65) 1
Pre-therapy hemoglobin <10 2,042 (20.9%) 1.49 (1.23-1.80) 1
Pre-therapy platelet 2350 2,700 (27.6%) 1.24 (1.03-1.49) 1




Discrimination of Novel Risk Prediction Model

Dataset Risk score VTE % at6 mo Classification VTE % at6 mo TD-C statistic (95% Cl) ]
0- (1,938) 0.8% (14) .
Low-risk
HHS 1(1,483) 3.3% (47) 50.8% (4.958) 2.8% (131) //f/;f—
o 2 (1,537) 4.7% (70) ' ’ /ﬂ——
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Cohort ™ "11381)  8.1% (915) u 85’ (325623) 7.8% (2,755) 5 —
5+(9,273)  10.3% (952) R 000 ] _
O_ (5,661) 1-3% (59) ) 0 3 6 9 12 15 18 21 24
1(3,558)  3.1% (99) Low-risk 2.6% (325) o
MDACC ’ ‘ 60.0% (12,681) '
Validation |2 (3,462) >:4% (167) ' 0.71 (0.69-0.72) d
3 (3,489) 7.3% (232) L ' Rt "
High-risk - e
Cohort  I™7"7918)  9.3% (250) gh-ris 8.8% (742) e
5+ (2,054)  13.8% (260) 40.0% (8,461) 8 /

T T T T T T T
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Li, J Clin Oncol 2023. Li, Am J Hematol 2023



Calibration Curves in Validation Cohorts

VA Cohort MDACC Cohort
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Li, J Clin Oncol 2023. Li, Am J Hematol 2023



Comparison with Khorana Score

Dataset Category Khorana Score New RAM Number VTE % at 6 mo
Low-risk Low-risk 4,495 2.6% (112)
HHS 9 ’
Derivation Concordant (78%) ™1\ sk High-risk 3,107 10.5% (321)
Cohort Reclassified (22%) Low-risk High-risk 1,704 8.4% (138)
ohor ’ High-risk Low-risk 463 4.3% (19)
Low-risk Low-risk 40,360 3.0% (1,184)
VA °
Validation Concordant (72%) =Pt sk High-risk 17,242 8.2% (1,406)
Cohort Reclassified (28%) Low-risk High-risk 18,381 7.4% (1,349)
ohor ° High-risk Low-risk 3,534 2.5% (88)
Low-risk Low-risk 11,947 3.0% (303)
MDACC V. ”
Validation Concordant (80%) | ™ ot risk  High-risk 4,931 10.0% (451)
Cohort Reclassified (20%) Low-risk High-risk 3,530 9.0% (291)
ohor ° High-risk Low-risk 734 3.4% (22)

Key: New risk model increases VTE % in high-risk group by ~25% & improves overall C statistic ~0.07



Available Online Calculator

Cumulative Incidence
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0.15 -
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g
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e
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Time After Systemic Therapy (months)

= (- points 2 points 4 points

— 1 point - 3 points 5+ points

https://dynamicapp.shinyapps.io/EHR-CAT/

Cancer site/histology (choose one from the following)

Other cancers (0) v

Cancer stage (AJCC)
O Early stage (I-1l) (0)
Advanced stage (IlI-1V) (+1)

Type of systemic therapy

© Cytotoxic chemotherapy (chemo) and/or immune checkpoint
inhibitor (ICI) (0))

Targeted and/or endocrine therapy without chemo/ICl (-1)

Patient race

O All other race (0)
East/South Asian, Pacific Islander, American Indian or Alaskan
Native (-1)

Pretherapy body mass index = 35

© No (0) Yes (+1)

Pretherapy white blood cell count > 11 x 10°9/L
O No (0) Yes (+1)

Pretherapy hemoglobin < 10 g/dL

© No (0) Yes (+1)

Pretherapy platelet count > 350 x 10°9/L

© No (0) Yes (+1)

History of VTE

O No (0) Yes (+1)

History of paralysis/immobility

© No (0) Yes (+1)

Recent/current hospitalization >3 days in the past 3 months
© No (0) Yes (+1)



V. Dynamic Modeling &
Implementation of PC-CDS



Ambulatory Pharmacologic Prophylaxis is Rarely Implemented

* Lack of precision: Improved VTE prediction model
* “Khorana score complemented by clinical judgment and experience”

* Fear of bleeding: Automated exclusion for bleeding risk
* “used with caution in those with a high risk of bleeding”

e Lack of time: Clinical decision support
* high volume clinic, not integrated into EHR

* Lack of awareness:  Simpler access to evidence
* hematologist vs. oncologist; not comfortable to discuss




CAT Risk Decreases Over Time

Predictive Margins with 95% Cls Adjusted Predictions of ks_mod_cat_cds with 95% Cls
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Key: a time adjustment factor is needed to apply a static model over time

Li, unpublished data



Patient Specific Risk

Factors Change Over Time

id plan_n cancer_type dx_date treat_date chemo_class_regimen_cds risk_score vte_180d vte_date vte_type

1 1 breast 5/26/20 07/23/20 chemo+/-others (no immuno) 2 0

1 2 breast 5/26/20 11/17/20 chemo+/-others (no immuno) 4 0

1 3 breast 5/26/20 03/09/21 chemo+/-others (no immuno) 2 0

2 1 breast 6/27/18 08/17/18 target+/-endo (no chemo/immmuno) 1 0

2 2 breast 6/27/18 10/19/18 target+/-endo (no chemo/immmuno) 2 0
2 3 breast 6/27/18 12/27/19 _ target+/-endo (no chemo/immmuno) 1 0 . x
24 1 lung 10/27/16 12/12/16 chemo+/-others (no immuno) 5 1 4/20/17 Acute PE
29 1 colorectal 6/23/17 08/04/17 chemo+/-others (no immuno) 5 0 7/6/18 Acute PE
29 2 colorectal 6/23/17 12/12/17 chemo+/-others (no immuno) 4 1 7/6/18 Acute PE
|29 3 colorectal 6/23/17 03/19/18 chemo+/-others (no_immuno) 2 1 7/6/18  Acute PE
105 1 lung 8/29/19 10/11/19 chemo/immuno+others 7 0 7/16/20 Acute PE
105 2 lung 8/29/19 01/22/20 immuno+/-others (no chemo) 6 1 7/16/20 Acute PE




Automate Patient Selection & Exclusion in EHR Prospectively

Overview of Data flow in EPIC EHR

1. Data extraction

ALLERGIES
No Known Allergies

ACTIVE TREATMENTS

¥ AVASTIN (every 2 weeks)
] FERAHEME (IRON)

PROBLEM LIST

EPIC Hyperspace

4. Risk model visualization
VTE risk = 10%

2. Risk model calculation

— VTE%=X+Y+2

Relational database

3. Data linkage

Patients with signed treatment plan -14d/+30d from today (n=129)

Missin Unknown or multiple cancer type (n=3)

g . . .

data Missing cancer staging (Epic, note) (n=5)

(6%) Missing systemic treatment type (n=0)
Missing CBC, BMI, or other covariates (n=0)

A 4

Patients with no missing data (n=121) (94%)

Trial Acute leukemia (n=5)
ALT >5x, Bili >2x, eGFR <30, Weight <40 kg (n=9)

exclusion
criteria Drug interaction with DOAC (n=0)
(17%) Anticoagulant or dual antiplatelet (n=8)

High-risk for bleeding (?)

Y

Patients with no missing data or exclusions (n=99) (77%)

Provide risk-stratified education
to provider & patient

N=48 high-risk
> —p
N=51 low-risk




Patient Centered Clinical Decision Support (PC-CDS)

i

. . . GOVERNANCE PRIORITIZING MARKETPLACE
* Design/assess/optimize usage: Evidens for
. . / Dlssepmclg?;lgn via \\
* Time consuming process / %
// \‘\\
* Design provider- & patient-specific / \
surveys & education fliers /
. . . | MEASURING \
* Assess bqrrlers to |mplgmentat|on | 3@& AuTHORIG. [
(<25%): time, cost, difficulty, k Impacts i) interventions [
annoyance \\ LEARNING /‘
* Assess outcomes after \\ /
implementation /
IMPLEMENTING /
* Modify implementation strategy \ PCCDS 4
] LEGAL Interventions POLICY
* BCM VCG QI project 2023 - .

Blumenfeld, PCCDS LN, AHRQ 2017



Thank You

* Research Team * Mentors
* Danielle Guffey (statistician) e Christopher Amos
e Raka Bandyo (data analyst) e Christopher Flowers
e Xiangjun Xiao (lead programmer) e Stephanie Lee
e Shengling Ma (post-doc) * Marc Carrier
* Rockbum Kim (post-doc) * Neil Zakai
e Arash Maghsoudi (post-doc) * David Garica
 Mahrukh Jamil (research coordinator) e Funding Support
e Collaborators * CPRIT First-Time Tenure-Track
* Nathanael Fillmore * NIH AIM-AHEAD
* Kelly Merriman * NIH NHLBI K23
* Abiodun Oluyomi
* Bo Peng

e Cristhiam Rojas Hernandez
e Jordan Schaefer
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Live Broadcast
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Saturday, October 14 §

ANTICOAGULATION

BOOT CAMP Join us at this compact 2-day meeting!
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v’ 22 presentations
v" Daily chalk talks
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